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We provide evidence of a superfluid-insulator transition �SIT� of magnons in a quasi-one-dimensional
quantum ferrimagnet with isotropic competing antiferromagnetic spin interactions. This SIT occurs between
two distinct ferrimagnetic phases due to the frustration-induced closing of the gap to a magnon excitation. It
thus causes a coherent superposition of singlet and triplet states at lattice unit cells and power-law decay on the
staggered spin-correlation function along the transverse direction to the spontaneous magnetization. A hard-
core boson map suggests that asymptotically close to the SIT the magnons attain the Tonks-Girardeau limit.
The quantized nature of the condensed singlets is observed before a first-order transition to a singlet magnetic
spiral phase accompanied by critical antiferromagnetic ordering. In the limit of strong frustration, the system
undergoes a decoupling transition to an isolated gapped two-leg ladder and a critical single linear chain.
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I. INTRODUCTION

Recently, several experimental and theoretical studies in-
dicate that, under very special conditions, magnons1–3 and
polaritons4 undergo Bose-Einstein condensation �BEC� in
two-dimensional �2D� and three-dimensional materials. In
magnetic systems, BEC of magnons can be driven by an
applied magnetic field �h� �Ref. 1�, by varying the external
pressure,2 or by microwave pumping.3 In one-dimensional
�1D� gapped antiferromagnets, e.g., spin-1 chains5 and single
spin-1/2 two-leg ladders,6 the gap to the magnon excitation
closes at a critical value �hc� of the field and the magnetiza-
tion increases as �h−hc�1/2. Although, stricto sensu, there is
no BEC of magnons in these 1D systems, it is very appealing
to describe the transition in terms of the condensation of the
uniform component of the magnetization along the applied
field.5 In fact, rigorous results7 on low dimensional �D�2�
uniform interacting boson systems preclude the occurrence
of BEC in finite temperature �T�. In 2D systems phase fluc-
tuations have mainly a thermal origin, so that only the T=0
condensate survives, with superfluid behavior persisting up
to the Kosterlitz-Thouless temperature. In contrast, in 1D
boson systems phase fluctuations have a quantum origin and
there is no BEC, even at T=0, but superfluidity is expected.7

However, in finite systems the scenario is more complex
since in real confined systems7,8 one may be dealing with
metastable states.

In this work we introduce an isotropic Heisenberg spin
Hamiltonian with two competing antiferromagnetic �AF� ex-
change couplings �J1��1� and J� exhibiting a continuous
quantum phase transition at a critical value Jc1, which, we
argue, is a superfluid-insulator transition �SIT� of magnons
associated with the creation of a coherent superposition of
singlet and triplet states at lattice unit cells. For J=0, the
model shares its phenomenology and unit-cell topology with
quasi-one-dimensional ferrimagnetic compounds,9 such as
the line of trimer clusters present in copper phosphates,10 and
the organic ferrimagnet PNNBNO �Ref, 11�. On the theoret-
ical side, several features of the ferrimagnetic phase have

been studied through Hubbard,12 t−J �Ref. 13� and
Heisenberg14 models, including magnetic excitations15,16 and
the occurrence of new phases induced by hole doping of the
electronic band.17 Also, the physical properties of the com-
pound Cu3�CO3�2�OH�2 were successfully explained18 by the
distorted diamond chain model,19 which is a system with
three spin 1/2 magnetic sites per unit cell and coupling pa-
rameters such that the ferrimagnetic state is frustrated.

Numerical results have been obtained for finite clusters
through density matrix renormalization group �DMRG�
�Refs. 20 and 21� using open boundary conditions and exact
diagonalization �ED� using periodic boundary conditions and
Lanczos algorithm.

The paper is organized as follows: in Sec. II we introduce
the model Hamiltonian and analyze the magnetic correlations
of the competing phases close to J=Jc1. In Sec. III we define
a hard-core boson model �HCB model�, which is used to
describe the main characteristics of the magnon SIT at
J=Jc1, in particular, the Tonks-Girardeau limit. Furthermore,
in Sec. IV we discuss the singlet magnetic spiral phase ac-
companied by critical antiferromagnetic ordering, which sets
in after a first-order transition at J=Jt, as well as the decou-
pling transition at J=Jc2, to an isolated gapped two-leg lad-
der and a critical single linear chain. Finally, a summary of
the results is presented in Sec. V.

II. MODEL HAMILTONIAN AND ORDERED PHASES

The model Hamiltonian reads:

H = �
l=1

Nc

�
�=1,2

Al · �B�l + B�,l−1�

+ J�
l
�Al · Al+1 + B1l · B2l + �

�=1,2
B�,l · B�,l+1� , �1�

as sketched in Fig. 1�a�. In Eq. �1�, Al, B1l, and B2l denote
spin 1/2 operators at sites Al, B1l, and B2l of the unit cell l,
respectively, and Nc is the number of unit cells. For J=0 the
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model �named AB2 chain or diagonal ladder� is bipartite and
the Lieb-Mattis �LM� theorem22 predicts a ground-state �GS�
total spin,

Sg =
	NA − NB	

2
=

Nc

2
� SLM, �2�

where NA �NB� is the number of A �B1 and B2� sites. The GS
spin pattern is represented in Fig. 1�b�. In Fig. 1�c� we report
data for Sg /SLM as a function of J using DMRG �Nc=33� and
ED �Nc=10�. Although the LM theorem is not applicable for
J�0, the ferrimagnetic phase �F1 phase� is robust up to
J
0.342�Jc1 �Ref. 23�, beyond which Sg steadily decreases
�F2 phase� before a first-order transition to a phase with
Sg=0 �apart from finite-size effects� at J
0.445.

In order to characterize the F2 phase, we have calculated
the magnetic structure factor,

FX�q� = �
l

Nc

CX�l�eiql, �3�

where q=2�n / �Nc−1� �where n=0,1 , . . . ,Nc−1�, CX�l� is
the two-point correlation function between spins separated
by l unit cells at sites X=A,B1, and B2. We first noticed that
the A spins remain ferromagnetically ordered as the critical
point Jc1=0.342 is crossed, although the magnitude of the
peak at q=0 decreases for J�Jc1 �as displayed in Fig. 2�a��,
while no peak is observed at q=�. The Bi �i=1 or 2� spins
also remain ferromagnetically ordered �peak at q=0�, with
similar J dependence, as shown in Fig. 2�b�. However, an

extra peak at q=� develops after the transition, which indi-
cates the occurrence of a period—two modulation in the spin
pattern for J�Jc1. Furthermore, the average value of the
correlation function �B1l ·B2l�, which amounts to 
0.25
�triplet state� in the F1 phase, steadily decreases after the
transition at Jc1. These findings suggest that the F2 phase
would display a canted configuration, as illustrated in Fig.
2�c�. However, to check whether these features are robust in
the thermodynamic limit, we have studied the finite-size
scaling behavior of the transverse �T� and longitudinal �L�
order parameters in the F2 phase:

mX�L,T�
2 �q� =

FX�L,T��q�

Nc
, �4�

for q=0 �uniform component� and q=� �staggered compo-
nent�, in the subspace of maximum total spin z component
�Sz=Sg�. The correlations are studied at J=0.395, for which
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FIG. 1. �a� Illustration of the A and B sublattices �circles� and
AF spin couplings, which favor �full lines� and destabilize �dashed
lines� the LM ferrimagnetic GS: J1��1� and J, respectively. �b�
Illustration of the LM ferrimagnetic GS. �c� Results �see text� for
Sg /SLM; dashed and dotted lines are guides to the eye.
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FIG. 2. DMRG results for the magnetic structure factor, FX�q�,
at q=0 and q=� for �a� X=A and �b� X=B�B1 or B2� spins in a
chain with Nc=33; dashed lines are guides to the eye. �c� Illustra-
tion of the F2 phase.
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Sg=SLM /2, and the results are shown in Fig. 3. We confirmed
that in the �extrapolated� thermodynamic limit the spins at
sites A and B are ferromagnetically ordered, as indicated by
mXL

2 �q=0��0 in Figs. 3�a� and 3�b�. Furthermore, since the
A and B net magnetizations are oppositely oriented, the F2
phase is ferrimagnetic. The values of mAL

2 �q=��, mBL
2 �q

=��, and mBT
2 �q=0� nullifies linearly with system size, which

evidences short-range correlations. On the other hand, the
best fitting to the data for mBT

2 �q=�� presents a nonlinear
dependence with the inverse of the system size and also nul-
lifies in the thermodynamic limit. This behavior indicates
that the staggered correlation function of the spins at sites B

along the transverse direction to the spontaneous magnetiza-
tion, CBT��l�, exhibits power-law decay, as explicitly con-
firmed in Fig. 3�c�. We thus conclude that for Jc1�J
�0.445 the GS is also ferrimagnetic but with critical corre-
lations along the transverse direction to the spontaneous
magnetization �F2 phase�.
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FIG. 4. �a� Illustration of the relevant magnon excitation for
J=0: ellipse indicates a local singlet state. �b� Magnon band for
J=0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, and 0.34, from top to
bottom. �c� NS as a function of J. Full lines are the HCB model
predictions in the TG limit and dashed lines are guides to the eye.
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FIG. 3. DMRG results for the square of the longitudinal �L� and
transverse �T� order parameters at the spin sector Sz=Sg and
J=0.395 for �a� A and �b� B �B1 or B2� spins �full lines are polyno-
mial fittings�. �c� DMRG results for the transverse staggered corre-
lation function CBT��l�.
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Next we focus on the effect of J on the magnetic excita-
tions. For J=0 the Hamiltonian exhibits three magnon
modes.15,16 One is AF, i.e., the spin is raised by one unit with
respect to the GS total spin, while the other two are ferro-
magnetic associated with the lowering of the GS total spin
by one unit. The AF gapped dispersive mode is responsible
for a quantized plateau in the magnetization curve as func-
tion of h and should also exhibit condensation, as suggested
by the numerical data in Ref. 16. One of the ferromagnetic
magnons is the gapless dispersive Goldstone mode, while the
other is a flat mode and is the relevant excitation for the
transition at J=Jc1. To understand some nontrivial features of
this excitation, we must comment on the symmetry proper-
ties of the model. For J=0 the Hamiltonian is invariant under
the exchange of the B sites at the same cell. This symmetry
implies that spins at these B sites can be found only in singlet
or triplet states �mutually exclusive possibilities�; in the GS
only triplets are found. The relevant magnon is a localized
gapped mode, which induces the formation of a singlet pair
in one cell �as illustrated in Fig. 4�a��. For J�0, this local
symmetry is explicitly broken and the spins at these B sites
can be found in a coherent superposition of singlet and triplet
states. In Fig. 4�b�, data using ED for the magnon band
�q=2�n /Nc ,n=0,1 , . . . ,Nc−1� is displayed for various
values of J before the transition point. For J=0 the band is
flat with a gap �0
1.0004. By increasing J, the bandwidth
increases and the gap to the GS decreases, closing at the
wave vector q=� at the transition point.

III. HARD-CORE BOSON MODEL, SUPERFLUID-
INSULATOR TRANSITION, AND THE TONKS-

GIRARDEAU LIMIT

The GS total number of singlets is given by

NS = �
l=1

Nc

��l� , �5�

with singlet density ��l�= �sl
†sl�, where

sl
† �

1
2

�B1l,↑
† B2l,↓

† − B1l,↓
† B2l,↑

† � , �6�

is the creation operator of a singlet pair at cell l and Bil,	
† is

the creation operator of an electron with spin 	 at the Bi
�i=1,2� site of cell l. In fact, it is easy to show that

��l� =
1

4
− �B1l · B2l� , �7�

so NS=0 for J=0. In Fig. 4�c� we observe that NS starts to
increase in steps of unity after J=Jc1, indicating the quan-
tized nature of the condensing singlets.

We now examine the nature of the quantum critical point
at J=Jc1. For this purpose we split the Hamiltonian of Eq. �1�
in three terms: the first favors ferrimagnetism,

HAB = �
l

Al · �Sl + Sl−1� , �8�

where Sl=B1l+B2l; the second one favors AF ordering be-
tween A spins, i.e.,

HA = J�
l

Al · Al+1, �9�

and shall play no significant role in our analysis; the last
term, also unfavorable to ferrimagnetism, is a two-leg ladder
Hamiltonian connecting spins at sites B1 and B2 �discarding a
constant factor�:24,25

HB =
J

2��l

Sl
2 + �

l

Sl · Sl+1 + �
l

Dl · Dl+1� , �10�

where Dl=B1l−B2l. We represent the Hamiltonian in a basis
with two states for each pair B1l and B2l: the singlet and the
triplet component in the magnetization direction. In addition,
we define the vacuum of the HCB model as the state with
this triplet component in each cell. We now study the GS
energy when a number NS of singlet pairs is added to the
vacuum. For J=0, the energy cost of a singlet pair is �0 �the
gap to the flat mode�; thus, for NS singlets, the contribution
from HAB is NS�0. The first term in HB is diagonal and will
add a factor of −JNS; the second causes a repulsion between
singlets and adds also an extra factor of −JNS; finally, the last
term in HB introduces the singlet itinerancy. Grouping these
contributions, we arise to a model of hard-core bosons with
nearest-neighbor repulsion:
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FIG. 5. �a� Ground-state energy, EGS, relative to the energy of
the LM state. �b� Luttinger liquid exponent, K, as function of �.
Full lines are the HCB model predictions in the TG limit and
dashed lines are guides to the eye.
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HS = ��0 − 2J�NS +
J

2�
l

�l�l+1 +
J

2�
l

�sl
†sl+1 + H.c.� .

�11�

We remark that the hard-core boson interaction is implied
by the algebra of the singlet operators:

�sl,sl
†�+ = 1, �12�

and

�sl,sm�− = 0 for l � m . �13�

Before the transition, the single magnon dispersion relation,


q�J� = �0 − 2J + J cos q , �14�

agrees well with the numerical data for q
�, as can be seen
in Fig. 4�b�. The resulting critical point: 
q=��Jc1,S�=0, i.e.,
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Jc1,S =
�0

3

 0.333, �15�

is in excellent agreement with the numerical prediction Jc1
=0.342. Moreover, the closing of the magnon gap is also in
excellent agreement with the prediction

�J = 
�q = �� = 3�Jc1,S − J� , �16�

and with the expected linear vanishing of the Mott gap:26

z�=1, where z=2 and �=1 /2 are the correlation length and
dynamic critical exponents, respectively �see below�.

After the transition and in the highly diluted limit
�NS / Nc ��→0�, the energy of NS hard-core bosons in 1D is
well approximated by the energy of NS free spinless
fermions.5 Through this map, the energy density reads,

EGS�J� =
EGS�J�

Nc
= �

−kF

kF dk

2�
��k�J� − F� , �17�


3�Jc1,S − J�� +
J�2�3

6
, �18�

where kF=�� and

�k�J� − F = 
k+��J� 
 − 3�J − Jc1,S� +
Jk2

2
. �19�

Notice that the Fermi chemical potential satisfies the
Tonks-Girardeau �TG� limit7,27,28 �1D Bose gas of impen-
etrable particles�, corresponding to an infinitely high repul-
sive potential in the Lieb-Liniger solution29 of the �-function
1D Bose gas:

F = �F�J� =
�2J�2

2
, �20�

where J−1 is the fermion mass, ��1, and � is the density of
singlets for J�Jc1,S derived from the equilibrium condition
��EGS�J�=0:

� =
6�J − Jc1,S�

�J
, � → 0, �21�

much in analogy with the 1D field-induced transition. Fur-
thermore, in Fig. 4�d� we display the good agreement be-
tween the numerical estimate for the density ��l� of a two
�four� particle state, NS=2 �NS=4�, in an open system and
the HCB model in a continuum space given by24

���l�� =
2

Nc − 1�
n=1

NS

sin2�knl� , �22�

with kn=1, . . . ,
�NS

Nc−1 . Also, as shown in Figs. 1�c�, 4�c�, and
5�a�, the HCB model predictions for

Sg

SLM
= 1 − 2� , �23�

� and EGS�J�, respectively, are very close to the numerical
data for J�Jc1
Jc1,S.

On the other hand, using the Luttinger liquid
description30,31 for our highly diluted HCB model, we have
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FIG. 7. Staggered correlation functions between �a� A spins,
Nc=32, and �b� Bi �with i=1 or 2� spins, Nc=33, for the indicated
values of J. In �a� and �b� solid lines indicate the asymptotic behav-
ior for a single chain. �c� Staggered correlation functions between
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length � as a function of J: solid line indicates the fitting of the data
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the following general relations for the sound velocity c and
the compressibility �:

c =
�J�

K
, �24�

1

�2�
=

�c

K
, �25�

where K is the Luttinger parameter governing the decay of
the correlation functions. However, since

1

�2�
=

d2EGS

d�2 = �2J� , �26�

it implies that K=1; thus c=�J�=JkF, in accord with the TG
limit.7,28 Furthermore, taking � as the order parameter of the
SIT, Eq. �21� implies �=1 /2, while �2� diverges with a
critical exponent �=�=1 /2, in agreement with the scaling
and hyperscaling relations:26

� + 2� + � = 2, �27�

2 − � = ��d + z� , �28�

respectively, assuring that the SIT is in the free spinless gas
universality class.32

In an interacting Bose gas,33 K=1 /2 is the separatrix be-
tween systems dominated by superfluid fluctuations, K
�1 /2, from those dominated by charge density fluctuations,
K�1 /2, �in our magnetic model, spin fluctuations prevail�.
Affleck and co-workers34 have succeeded in taking into ac-
count the corrections from interactions between pairs of di-
lute magnons parametrized by a scattering length, a, thus
implying that

K = 1 − 2am + O�m2� , �29�

where m is the field-induced magnetization for the S=1
chain, with a
−2. The predicted increase in K with m was
confirmed by numerical calculations.34 This parametrization
can also be implemented in our problem. In fact, in Fig. 5�b�
we show that K=1−4�, with a
2, fits quite well the data
for the Luttinger liquid parameter in the highly diluted re-
gime. K was calculated using DMRG and assuming

CBT� �
a0

l1/2K . �30�

IV. SPIRAL CORRELATIONS, WEAKLY COUPLED AF
CHAINS, AND LADDER-CHAIN DECOUPLING

We now turn our attention to the transition point Jt

0.445, which marks the onset of a singlet phase, as can be
seen in Fig. 1�c�, characterized by nonquantized values of
NS, as shown in Fig. 4�c�. On the other hand, from the
Hamiltonians in Eqs. �8�–�10�, we can infer that for J�1 the
system should decompose into a linear chain �A sites� and an
isotropic two-leg ladder system �B1 and B2 sites�; see Fig.
1�b�. The linear chain is known to be gapless with critical
spin correlations �power-law decay�, while the two-leg lad-

der is gapped with exponentially decaying correlations. In
what follows we discuss the complex phase diagram in the
region J�Jt.

Initially, we display in Fig. 6 the magnetic structure fac-
tors FA�q� and FBi

�q�, with i=1 or 2, as well as FS�q�, which
is associated with the magnetic structure of the composite
spin Sl=B1l+B2l. In Fig. 6�a� we see that FA�q� peaks at q
=0 for J=0.44, i.e., the system remains in the F2 phase and
the A spins are ferromagnetically ordered. For J=0.45, a
sharp peak in a spiral wave vector qmax is observed. The peak
broadens and qmax increases with increasing J. For J=0.56
we notice the emergence of a commensurate AF peak, coex-
isting with the spiral one, particularly for J�0.60 �as seen in
Figs. 6�a� and 6�b��. On the other hand, we observe in Fig.
6�c� the presence of two peaks in FBi

�q� for J=0.44: the q
=0 peak associated with the ferromagnetic ordering of the Bi
sites in the F2 phase and the q=� peak related to the critical
staggered transverse correlation at the same phase. Likewise,
for J=0.45, a spiral peak is observed at the same wave vector
qmax of FA�q�. Furthermore, notice in Fig. 6�d� that the mag-
nitude of the AF peak drops in the interval 0.96�J�1.00.

In order to develop a physical meaning of the above re-
ferred data, we first point out that the coupling between spins
at A and B sites occurs through the composition Sl=B1l
+B2l, as can be seen in Eq. �8�. Furthermore, as the singlet
component of Sl is magnetically inert, only its triplet com-
ponents affect the magnetic ordering at the A sites. In fact, as
shown in Figs. 6�e� and 6�f�, short-range spiral ordering is
observed in the magnetic structure of Sl up to J
1.00. How-
ever, since the peak is weak and broad for J�0.6, its feature
is overcome by the AF one in the data of Figs. 6�a�–6�d�. In
the sequence, we focus on the AF ordering observed for
J�0.6 and we study how the system approaches the ladder-
chain decoupling.

In Fig. 7�a�, we present the staggered AF correlation func-
tion between A spins as J→1. As observed, its behavior is
well described by that found in a single linear chain, which is
asymptotically given by

C�l� �
�− 1�l

l
, �31�

apart from logarithmic corrections.30 A similar behavior is
observed in Fig. 7�b� for the staggered AF correlation be-
tween Bi spins up to J=0.88, a value beyond which the shape
of the curve is visibly changed. In order to understand this
dramatic behavior, we recall that in a two-leg ladder system
the asymptotic form of the correlation is given by35

C�l� �
�− 1�le−l/�

l1/2 , �32�

where � �
3.2, see Ref. 36� defines the correlation length,
associated with the gapped spin liquid state of this system.
Indeed, as displayed in Fig. 7�c� the staggered correlations
CBi

asymptotically approaches the correlation in a two-leg
ladder system. In Fig. 7�d� we present the behavior of � as a
function of J for Nc=33 and Nc=65. These data were ob-
tained by a proper fitting of CBi

in the interval l0� l
� �Nc /2�: starting from J=2 and taking l0
6 �about twice
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the value of � of a two-leg ladder�, we find �; twice this value
of � was used as input �l0=2�� for the next chosen value of J
and so on. Moreover, we have obtained good fitting to these
data by using the two-loop analytic form of the O�3� nonlin-
ear sigma model �NLSM� correlation length in �1�1�
dimension:37

� = ae2�/g�1 +
2�

g
�−1

, �33�

where a is a constant and g is the NLSM coupling. Further-
more, we assume �see below� that the coupling g is the one
suitable to the anisotropic quantum Heisenberg two-leg lad-
der to the NLSM �Ref. 38�:

g = 2�1 +
J�

2J�

, �34�

where J� �J�� is the exchange coupling between spins at the
same rung �leg� and � is a constant that depends on the
choice of the lattice regularization.

In order to justify Eq. �34� for g, we consider a mapping
of the model Hamiltonian �Eq. �1�� to the Hamiltonian of an
isolated two-leg ladder by eliminating the spin degrees of
freedom associated with the A sites. The mapping is per-
formed, in a semiclassical manner, by the following assump-
tion on HAB �Eq. �8��:

HAB → H̄AB = ��
l

Al · Sl, �35�

where � is an effective coupling constant. This amounts to
reduce the A-B coupling to spins within the same unit cell,
and cell-cell interactions are taken into account through the
effective coupling �. We now write: �Al+Sl�2=Al

2+Sl
2

+2Al ·Sl, with Sl
2=B1l

2 +B2l
2 +2B1l ·B2l; since within a unit

cell �Al+Sl�2
�1 /2�2 in an AF phase, and dropping constant

terms, H̄AB can be written as

H̄AB = − ��
l

B1l · B2l. �36�

Since correlations between spins at A sites does not play a
significant role close to the transition, we discard the term
HA, and, finally, obtain the following anisotropic two-leg
ladder Hamiltonian:

H → HaL = H̄AB + HB, �37�

where the exchange couplings are given by

J� = J − � , �38�

J� = J . �39�

Substituting Eqs. �38� and �39� into Eq. �34�, we find the
effective NLSM coupling:

g = �6�J − Jc2�
J

, �40�

where Jc2=� /3. We have fitted the data in Fig. 7�d� to Eq.
�33�, with g given by Eq. �40�, and a, �, and Jc2 as fitting
parameters. The obtained value of a �=2.7� is such that �
→3.1 as J→�, which agrees with the expected value for an
isolated isotropic two-leg ladder �
3.2�, while �=4.5 and
Jc2=0.91, in agreement with the correlation function behav-
ior shown in Fig. 7�b�.

Finally, in Fig. 8 we display a very interesting behavior of
the density of singlets, �, as function of J. It is clear that the
effect of the A spins and singlet-singlet interaction is relevant
only for Jt�J�Jc2, otherwise the solution �Eq. �21�� for low
density of singlets can be extended to the region of low den-
sity of triplets above Jc2 �strongly coupling limit�, where
correlations between B spins are exponentially small �see Eq.
�32��. In fact, the asymptotic value predicted by Eq. �21�, i.e.,
�=6 /�
0.78, compares well with the numerical one:

0.71.

V. SUMMARY AND CONCLUSIONS

In this work we have derived the rich phase diagram of a
three-leg spin Hamiltonian related to quasi-one-dimensional
ferrimagnets, as function of a frustration parameter J, which
destabilizes the ferrimagnetic phase. In Fig. 9 we present an
illustration of the obtained phase diagram, which displays
two critical points, Jc1
0.342 and Jc2
0.91, and a first-
order transition point at Jt
0.445. Through DMRG, exact
diagonalization, and a hard-core boson model, we have char-
acterized the transition at Jc1 as an insulator-superfluid tran-
sition of magnons �built from the coherent superposition of
singlet and triplet states between B sites at lattice unit cells�,
with a well defined Tonks-Girardeau limit in the high diluted
regime. Ferrimagnetism with critical staggered correlations
in a direction transverse to the spontaneous magnetization is
observed for Jc1�J�Jc2. Furthermore, for Jc1�J�Jt the
number of singlets in the lattice is quantized, while above the
first-order transition at J=Jt this quantity is a continuous one.
Also, in the interval Jt�J�Jc2 the magnetic structure factor

0.3420 1 2
J

0

0.2

0.4

0.6
η

DMRG (N
c
= 33)

HCB Model

FIG. 8. Density of singlets as function of J.
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Correlations

Spiral

Ferrimagnetism
+

Critical

Antiferromagnetic
Transverse Correlations

J0

Decoupling
Ladder−Chain

FIG. 9. Schematic representation of the phase diagram.
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displays a singlet phase with incommensurate �q�0 and ��
spiral and AF peaks. However, the spiral peak broads and the
AF peak is the salient feature as J increases within this
phase. At J=Jc2 a remarkable gapped two-leg ladder/critical
single-linear chain decoupling transition occurs, character-
ized by an essential singularity in the correlation length as
predicted by the NLSM through a mapping of our model
onto an anisotropic quantum Heisenberg two-leg ladder. For
J�Jc2 the ladder approaches the isotropic limit �full decou-
pling� while the linear chain remains critical.

In summary, our reported results clearly reveal that frus-
trated quasi-one-dimensional magnets are quite remarkable

systems to study magnon condensation, including the cross-
over to coupled ladder systems of higher dimensionality39

and related challenging phenomena,40 as well as frustration-
driven quantum decoupling transition in ladder systems.
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